Introdução: conceitos e noções via raciocínio lógico e intuitivo
No município de Cambará, a câmara municipal aprovou uma lei em 2018 que regulamenta sobre o tempo de espera para atendimento nas instituições bancários.
A agência do banco ACME de Cambará PR vem enfrentando recorrentes notificações da prefeitura em virtude do tempo de espera excessivo no atendimento ao público. A agência Cambará dispõe de 2 funcionários para atendimento, o que é compatível a de outras cidades de porte similar. Insatisfeita com os índices, a sede do banco ACME exigiu melhorias para níveis satisfatórios num prazo de 2 meses. O diretor responsável da agência, por sua vez, convoca os gerentes para deliberarem sobre estratégias para mitigar o tempo de espera no atendimento. Após a reunião decidiu-se contratar uma consultoria para:
redesenhar os processos e métodos
montar um programa de treinamento
Apesar dos resultados positivos alcançados dentro de um mês, as reclamações pelo tempo de espera ainda continuavam frequentes e acima do estabelecido por lei como razoável. No relatória da consultoria, fica claro que a agência somente irá cumprir as exigências da sede se definir um layout eficiente. O relatório também sustenta que um atendente especializado demanda: 10 min no serviço A e 20min no serviço B. Ao passo que um funcionário generalista demanda: 11 min no serviço A e 28 min para o serviço B.
Restando apenas um mês, o diretor convoca os gerentes para definir o layout. Após muito debate propostas, um empasse se instalou entre os executivos para decidir entre layout definir.
Área do quadrado \(S\): \(A_{S}=2r\times 2r=4r^2\)
Área do círculo \(C\): \(A_{C}=\pi r^2 \Rightarrow \pi = \frac{A_{C}}{r^2}\)
Substituindo \(r^2=A_{S}/4\) \[ \pi = 4\cdot\frac{A_{C}}{A_{S}}\leq 4. \] Como \(C\) está circunscrito a \(S\) então \(A_{C} \leq A_{S}\). Se um ponto dentro de \(S\) for selecionado aleatoriamente, a chances de estar dentro também de \(C\) é proporcional a \(A_{C}\). Um estimador com \(n\) pontos
\[ \hat{\pi}_{n} = 4\cdot\frac{ \#\left\{ a_i \in C \right\}}{n} \text{ onde } i=1,...,n. \]
Logo, o problema de estimar o valor de \(\pi\) pode ser trocado pelo problema de encontrar a área do círculo \(C\).
No quadro intitulado Porta dos Desesperados, o apresentador Sérgio Malandro trazia uma criança ao palco. Na brincadeira, a criança teria que adivinhar em qual das três portas estava o prêmio. Antes de abrir a porta, invariavelmente, Sérgio Malandro revelava uma das portas restantes, na qual seguramente estava vazia. Na sequência, o apresentador perguntava à criança se desejaria mudar de porta ou se manteria. Definida a resposta, então era aberta a porta dos desesperados.
As crianças que mantinham suas convicções em suas escolhas eram menos ou mais assertivas do que aquelas que mudavam de opinião, ou a adoção de qualquer estratégia conduz as mesmas probabilidades de ganho? Podemos utilizar de uma simulação para verificar se há alguma diferença significativamente entre elas.
Para verificar o resultado de nossa simulação aperte o botão Run Code